Inverse Problem for a Coupled Parabolic System with Discontinuous Conductivities: One-dimensional Case
نویسندگان
چکیده
We study the inverse problem of the simultaneous identification of two discontinuous diffusion coefficients for a one-dimensional coupled parabolic system with the observation of only one component. The stability result for the diffusion coefficients is obtained by a Carleman-type estimate. Results from numerical experiments in the one-dimensional case are reported, suggesting that the method makes possible to recover discontinuous diffusion coefficients.
منابع مشابه
The Immersed Interface Method in Three Space Dimensions and Applied to Elliptic Inverse Problems
The immersed interface method (IIM) by Li and LeVeque has been used successfully for a wide variety of problems. We extended it to nonlinear one-dimensional elliptic and parabolic problems and applied it to traac ow. When applying the IIM to inverse problems in electrical impedance tomography, we found unstabilities that prohibited its use. Recent improvements by Li have overcome the problems (...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملThe global existence of a parabolic cross-diffusion system with discontinuous coefficients
This paper deals with a one-dimensional parabolic cross-diffusion system describing two-species models. The system under consideration is strongly coupled and the coefficients of the equations are allowed to be discontinuous. The existence and uniqueness of nonnegative global solutions are given when one of the cross-diffusion pressures is zero. Our approach to the problem is by an approximatio...
متن کاملSOLUTION OF AN INVERSE PARABOLIC PROBLEM WITH UNKNOWN SOURCE-FUNCTION AND NONCONSTANT DIFFUSIVITY VIA THE INTEGRAL EQUATION METHODS
In this paper, a nonlinear inverse problem of parabolic type, is considered. By reducing this inverse problem to a system of Volterra integral equations the existence, uniqueness, and stability of the solution will be shown.
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کامل